Engineered Particles in Drug Delivery System

Engineered particles in drug delivery systems are administered to the human body through several anatomic routes. For therapeutic purposes, choosing the most suitable administrative route is of unquestionable importance. Therefore, researchers are suggesting new approaches for the development of engineered particles in drug delivery systems (DDS).

Factors to Consider While Administering Drugs

  • The properties of the drug
  • The illness to be treated
  • The desired therapeutic time

One novel approach is through micro-DDS, which presents various benefits for drug administration. Scientific innovation in this field, which is based on nanotechnology, aims to create personalized treatment for a range of prevalent diseases, including cancer and diabetes. In addition to developments in application, efforts have been made to control several elements considered essential for enhancing the performance of a treatment, such as the rate, period and targeting of the delivery.

Also Read: How Patents Help Protect Pharmaceutical Innovation

Factors Compelling the Scientific Community to Develop Advanced Approaches

  • The off-target effects of traditional drug delivery methods, which may cause severe side effects or have a toxic effect on healthy tissues;
  • The impossibility of controlling drug levels over a long period, as doses peak at administration times when alternated with sub-therapeutic drug levels; and
  • The enhanced bio-availability, high-drug loading or systemic stability in DDS that are based on nano scale devices.

The interest in nano medicine for treatment and diagnosis is reflected by the increasing number of publications and patents issued over the past few years. Patent filing activity reveals that until 2005, few inventions were published in this field. The period between 2009 and 2013 seems to have been a transition phase, resulting in a substantial increase in patenting activity (nearly 280% on the number of filings before 2008). The transition phase was in turn followed by a period of prolific publications – 2017 marking a huge increase in patenting activity. From 2009 to 2012, the highest growth occurred in patent filings related to cancer-targeting nano particle technology. Most nano particle DDS relate to several types of cancer, with the following patented nano particle-based cancer therapeutics already in the market:

  • Doxil® (Caelyx® in Europe)
  • Myocet®
  • DaunoXome®
  • DepoCyt®
  • Abraxane®
  • Genexol-PM®
  • Oncaspar®

One can prepare a number of nano-DDS using different types of material, such as:

  • Polymers
  • Lipids
  • Ceramics
  • Metallic nano particles

Also Read: How to do Prior-Art Searching in Pharmaceutical literature

Examination of Particles for Application Under DDS

The published inventions suggest that particles one prepares from either natural or synthetic polymers and examined extensively to fall under ‘DDS’ category. The most widely used natural polymers in drug delivery are those based on lactic and glycolic acids. However, an N– (2-hydroxypropyl) methacrylamide-doxorubicin co-polymer formulation was the first to enter clinical trials; the first marketed natural polymer was Abraxane® based on an Albumin-bound paclitaxel natural polymer. In 2005, the Food and Drug Administration (FDA) approved Abraxane® for the treatment of metastatic breast cancer and in 2012. The approval ceded for its use against non-small cell lung carcinoma.

Technical Challenges In the Evolution of Nano-DDS

Overall, the technical challenges faced by the scientific community during the evolution of nano-DDS include improving:

  • Firstly, the therapeutic index;
  • Further, it involves improving the properties of drugs, including:
    • size
    • stability
    • distribution
    • solubility;
  • Moreover, accuracy in drug delivery at specific sites also requires improvement;
  • Also, the materials involved play a great role and hence, require improvement;
  • Additionally, the improvement areas also include the responses to external stimuli;
  • Lastly, it includes the methods of drug preparation.

Universities, research institutes, start-ups and small and medium enterprises (especially in the United States and China) are the main contributors for development in nano-DDS. The United States is leading the way with more than half of the total number of patents filed in this field, followed by South Korea, Japan and Germany. The published patent literature reveals that the universities file most of the inventions:

  • Fudan University
  • University Suzhou
  • East China Normal University
  • China Pharmaceutical University
  • Chongqing University

Also Read: Introduction to Pharmaceutical Trademarks

Conclusion (Control Release in Drug Delivery System)

The success of such therapies depends on the development of new delivery vectors that are capable of delivering drugs and molecules, while minimizing the adverse side effects on healthy tissue and organs. There is still more to explore in materials other than polymers. In the near future, it is likely that the development of new effective DDS, resulting from the integration of different interdisciplinary sciences, will find other important application areas, such as gene therapy and cancer treatment.

Sagacious IP offers customised solutions to meet your individual needs. Based on our long standing expertise, we strategically address your business challenges and then propose novel solutions. our consulting approach rather than a report-only tactic drives actionable results for business to adapt and grow.

– Ram C Tenneti (Vice President) and The Editorial Team

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

Exclusive Webinar Series
Exclusive Webinar Series. Cost: $0 (Free) Limited Seats Available. Don't miss the opportunity, Register Now